Fiber deprivation and microbiome-borne curli shift gut bacterial populations and accelerate disease in a mouse model of Parkinson's disease - ScienceDirect

Por um escritor misterioso

Descrição

Parkinson’s disease (PD) is a neurological disorder characterized by motor dysfunction, dopaminergic neuron loss, and alpha-synuclein (αSyn) inclusion…
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
Dietary fibre deprivation and bacterial curli exposure shift gut microbiome and exacerbate Parkinson's disease-like pathologies in an alpha-synuclein-overexpressing mouse
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
Fiber deprivation and microbiome-borne curli shift gut bacterial populations and accelerate disease in a mouse model of Parkinson's disease - ScienceDirect
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
IJMS October-2 2023 - Browse Articles
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
Parkinson's disease: Are gut microbes involved? American Journal of Physiology-Gastrointestinal and Liver Physiology
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
The Role of Functional Amyloids in Bacterial Virulence - ScienceDirect
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease - ScienceDirect
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine
Fiber deprivation and microbiome-borne curli shift gut bacterial  populations and accelerate disease in a mouse model of Parkinson's disease  - ScienceDirect
Gut microbiome-mediated regulation of neuroinflammation - ScienceDirect
de por adulto (o preço varia de acordo com o tamanho do grupo)